Random eigenvalue problems revisited

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse random matrices: the eigenvalue spectrum revisited

We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of state...

متن کامل

Random Eigenvalue Problems for Large Systems

The inherent uncertainties in geometry, material properties, etc. of engineering structures can be represented by stochastic models, where the parameters are described by probabilistic laws. Results from any analysis based on stochastic models inherit probabilistic information as well, which can be used e.g. for reliability analysis. Particularly in linear dynamics of structures the calculation...

متن کامل

Orthogonal Polynomial Expansions for Solving Random Eigenvalue Problems

This paper examines two stochastic methods stemming from polynomial dimensional decomposition (PDD) and polynomial chaos expansion (PCE) for solving random eigenvalue problems commonly encountered in dynamics of mechanical systems. Although the infinite series from PCE and PDD are equivalent, their truncations endow contrasting dimensional structures, creating significant differences between th...

متن کامل

Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sadhana

سال: 2006

ISSN: 0256-2499,0973-7677

DOI: 10.1007/bf02716778